首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2039篇
  免费   181篇
  国内免费   2篇
  2023年   12篇
  2022年   7篇
  2021年   56篇
  2020年   25篇
  2019年   29篇
  2018年   47篇
  2017年   32篇
  2016年   70篇
  2015年   108篇
  2014年   97篇
  2013年   126篇
  2012年   181篇
  2011年   168篇
  2010年   113篇
  2009年   85篇
  2008年   126篇
  2007年   130篇
  2006年   133篇
  2005年   97篇
  2004年   100篇
  2003年   86篇
  2002年   81篇
  2001年   24篇
  2000年   22篇
  1999年   22篇
  1998年   19篇
  1997年   7篇
  1996年   9篇
  1995年   10篇
  1994年   17篇
  1993年   11篇
  1992年   13篇
  1991年   12篇
  1990年   14篇
  1989年   10篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1985年   7篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1979年   6篇
  1978年   12篇
  1977年   5篇
  1975年   6篇
  1974年   7篇
  1970年   5篇
  1969年   5篇
  1967年   7篇
排序方式: 共有2222条查询结果,搜索用时 15 毫秒
41.
42.

Aim

Global conservation planning is often oriented around vertebrates and plants, yet most organisms are invertebrates. To explore the potential conservation implications of this bias, we assessed how well patterns of diversity for an influential group of invertebrates, the ants, correspond with those of three vertebrate groups (birds, mammals and amphibians).

Location

Global.

Methods

We compiled data on the number of genera of ants and the three vertebrate groups for 370 political regions across the world. We then compared their correlations both for overall diversity and between subsets of genera likely to be of conservation concern. We also developed generalized additive models (GAM) to identify regions where vertebrates and ants diverged in their diversity patterns.

Results

While ant and vertebrate diversity do positively correlate, the correlations are substantially weaker for the ant lineages of the greatest conservation concern. Vertebrates also notably fail to predict ant diversity in specific geographic areas, including Australia and Southeast Asia, parts of Africa and Madagascar, and south‐western China. These failures may be genuine differences in diversity patterns, or they may indicate important gaps in our knowledge of ant and vertebrate diversity.

Main conclusions

We conclude that it is currently unwise to assume that global conservation priorities based on vertebrates will conserve ants as well. We suspect that this also applies to other invertebrates.
  相似文献   
43.
We proposed to evaluate the genotoxicity and mutagenicity of a new quantum dots (QDs) nanoplatform (QDsN), consisting of CdSe/ZnS core–shell QDs encapsulated by a natural fusogenic lipid (1,2-di-oleoyl-sn-glycero-3-phosphocholine (DOPC)) and functionalized by a nucleolipid N-[5′-(2′,3′-di-oleoyl) uridine]-N′,N′,N′-trimethylammoniumtosylate (DOTAU). This QDs nanoplatform may represent a new therapeutic tool for the diagnosis and treatment of human cancers. The genotoxic, mutagenic and clastogenic effects of QDsN were compared to those of cadmium chloride (CdCl2). Three assays were used: (1) the Salmonella/microsome assay with four tester strains, (2) the comet assay and (3) the micronucleus test on CHO cells. The contribution of simulated sunlight was studied in the three assays while oxidative events were only explored in the comet assay in aliquots pretreated with the antioxidant l-ergothioneine. We found that QDsN could enter CHO-K1 cells and accumulate in cytoplasmic vesicles. It was not mutagenic in the Salmonella/mutagenicity test whereas CdCl2 was weakly positive. In the dark, both the QDsN and CdCl2 similarly induced dose-dependent increases in single-strand breaks and micronuclei. Exposure to simulated sunlight significantly potentiated the genotoxic activities of both QDsN and CdCl2, but did not significantly increase micronucleus frequencies. l-Ergothioneine significantly reduced but did not completely suppress the DNA-damaging activity of QDsN and CdCl2. The present results clearly point to the genotoxic properties and the risk of long-term adverse effects of such a nanoplatform if used for human anticancer therapy and diagnosis in the future.  相似文献   
44.
A retrospective cohort study was conducted on 1541 HIV-infected patients to determine variables associated with the incidence of herpes zoster. A single failure Cox model showed that herpes zoster incidence increased following the first 6 months of antiretroviral treatment adjusted hazard ratio (AHR)=5 (95%CI=2.6-9.2), P<0.001; in the >60 years age group AHR=2 (95%CI=1-4), P=0.04; in patients in the top CD8 quartile AHR=2.1 (95%CI=1.3-3.6), P<0.001; and in patients previously reported to use crack cocaine AHR=5.9, (95%CI=1.4-25), P=0.02. Herpes zoster incidence increased in patients with CD4 counts<500 per mm3 and gradually declined since 1992-1996, with AHR=0.3 (95%CI=0.2-0.5), P<0.001 for the 1997-2002 period and AHR=0.24 (95%CI=0.14-0.4), P<0.001 for the 2002-2008 period. Contrary to what has been described elsewhere, there was no specific effect of protease inhibitors on herpes zoster incidence. The present study is the first to suggest that crack cocaine is associated with an increased incidence of herpes zoster. The neurological or immunological effects of crack are discussed.  相似文献   
45.
46.

Background

Plasmodium vivax is the most prevalent human malaria parasite, causing serious public health problems in malaria-endemic countries. Until recently the Duffy-negative blood group phenotype was considered to confer resistance to vivax malaria for most African ethnicities. We and others have reported that P. vivax strains in African countries from Madagascar to Mauritania display capacity to cause clinical vivax malaria in Duffy-negative people. New insights must now explain Duffy-independent P. vivax invasion of human erythrocytes.

Methods/Principal Findings

Through recent whole genome sequencing we obtained ≥70× coverage of the P. vivax genome from five field-isolates, resulting in ≥93% of the Sal I reference sequenced at coverage greater than 20×. Combined with sequences from one additional Malagasy field isolate and from five monkey-adapted strains, we describe here identification of DNA sequence rearrangements in the P. vivax genome, including discovery of a duplication of the P. vivax Duffy binding protein (PvDBP) gene. A survey of Malagasy patients infected with P. vivax showed that the PvDBP duplication was present in numerous locations in Madagascar and found in over 50% of infected patients evaluated. Extended geographic surveys showed that the PvDBP duplication was detected frequently in vivax patients living in East Africa and in some residents of non-African P. vivax-endemic countries. Additionally, the PvDBP duplication was observed in travelers seeking treatment of vivax malaria upon returning home. PvDBP duplication prevalence was highest in west-central Madagascar sites where the highest frequencies of P. vivax-infected, Duffy-negative people were reported.

Conclusions/Significance

The highly conserved nature of the sequence involved in the PvDBP duplication suggests that it has occurred in a recent evolutionary time frame. These data suggest that PvDBP, a merozoite surface protein involved in red cell adhesion is rapidly evolving, possibly in response to constraints imposed by erythrocyte Duffy negativity in some human populations.  相似文献   
47.
Oleaginous seeds store lipids in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids bound by proteins embedded in a phospholipid monolayer. OB proteins are well conserved in plants and have long been grouped into only two categories: structural proteins or enzymes. Recent work, however, which identified other classes of proteins associated with OBs, clearly shows that this classification is obsolete. Proteomics‐mediated OB protein identification is facilitated in plants for which the genome is sequenced and annotated. However, it is not clear whether this knowledge can be dependably transposed to less well‐characterized plants, including the well‐established commercial sources of seed oil as well as the many others being proposed as novel sources for biodiesel, especially in Africa and Asia. Toward an update of the current data available on OB proteins this review discusses (i) the specific difficulties for proteomic studies of organelles; (ii) a 2012 census of the proteins found in seed OBs from various crops; (iii) the oleosin composition of OBs and their role in organelle stability; (iv) PTM of OB proteins as an emerging field of investigation; and finally we describe the emerging model of the OB proteome from oilseed crops.  相似文献   
48.
Highlights? Loss of AMPKα1 cooperates with the Myc oncogene to accelerate lymphomagenesis ? AMPKα dysfunction enhances aerobic glycolysis (Warburg effect) ? Inhibiting HIF-1α reverses the metabolic effects of AMPKα loss ? HIF-1α mediates the growth advantage of tumors with reduced AMPK signaling  相似文献   
49.
50.
Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号